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Part 1: Developments in the Field
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How can we improve experimental discovery to advance society and
improve wellbeing?
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1. Protein Prediction and Analysis Milestones

e  2021: Structure prediction becomes usable (AlphaFold2) vl | Open access | Published: 15 July 2021
o Accurate protein structures at scale shift biology to model-informed R:g::'yFaigurateProtei"Structurepredicﬁonwith
.. phaFo
decisions.

John Jumper B, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,

Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland, Clemens
Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav
Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal

Zielinski, ... Demis Hassabis &  + show authors

Nature 596, 583-589 (2021) | Cite this article

1.96m Accesses | 20k Citations | 4010 Altmetric | Metrics
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o  Accurate protein structures at scale shift biology to model-informed
decisions.
e 2022: Protein language models scale the “sequence — insight” loop
(ESMFold / ESM-2)
o Faster, cheaper inference and massive sequence-space coverage
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o  Focus shifts from "folded shape" to binding interactions (complexes,
ligands, RNA/DNA).
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(ESMFold / ESM-2)

o Faster, cheaper inference and massive sequence-space coverage
enable large metagenomic structure atlases and numerous
hypotheses.

2023: Generative design arrives (RFdiffusion)

o  Models begin proposing new sequences/molecules, not just predicting
nature.

2024: Interaction-centric modeling (AlphaFold 3)

o  Focus shifts from "folded shape" to binding interactions (complexes,
ligands, RNA/DNA).

2025: Truly novel functional proteins and target-conditioned design
emerge (ESM3 — esmGFP)

o  Foundation/diffusion models generate novel, functional proteins,
making target-conditioned design practical and moving protein
engineering toward an iterative workflow.

Experiment 1
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2. GLP-1 (Ozempic) Launch

OZEMPIC’

(semaglutide) injection

°
nov0 Nordisk

What [s Ozempic and Why Is It
Getting So Much Attention?

More people are turning to a diabetes medication to induce
weight loss — but experts say it's not a miracle drug.
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2. GLP-1 (Ozempic) Launch
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GLP-1 drug sales hit $22 billion (2022)
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3. Personalized CRISPR Therapy

e Traditional Model
o  One editor applied to one disease program over many
years, treating many patients.
e New Frontier (N-of-1)
o  Patient-specific editing for ultra-rare mutations (e.g.,
bespoke therapy for a child by CHOP/Penn).
e  Shift in Value
o  The "product" is now the capacity to rapidly generate
safe, specific edits. Value is placed on speed and

correctness, not just novelty.

Gene editing is becoming a more repeatable process, reframing

medicine as an engineering discipline where biology is
https://www.chop.edu/news/worlds-first-patient-treated-per

increasingly programmable_ sonalized-crispr-gene-editing-therapy-childrens-hospital
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3. Personalized CRISPR Therapy - Challenges

CRISPR/Cas9 System Delivery Cargoes
Plasmid-based CRISPR/Cas9
Cas9 mRNA + gRNA

Cas9-gRNA (RNP)

Viral Mediated Delivery Vehicles .

% Plasmid-based
3

\ CRISPR/Cas9

Non-Viral Mediated Delivery Vehicles

Virus
(nm range)

Cas9-gRNA (RNP)
(~12 nm)

Physical Mediated Delivery Methods

gRNA
Cas9 mRNA g
T Electroporation

Microinjection

Extracellular
membrane
(~20-30 um)

LNPs
(nm range)

'y

Cell nucleus & \
(~5-20pum)

https://www.synthego.com/blog/delivery-crispr-cas9/
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4. Market Growth

Biotechnology Market EE
Size, by Region, 2018 - 2030
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Future Developments

e Biology is shifting from running single

experiments to coordinated campaigns of ¢ —— ”
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Future Developments

e Biology is shifting from running single experiments to

coordinated campaigns of experiments, Bayesian
optimization, and active learning.

e This shift is happening now because models are
useful, lab robots are accessible, and assays are
high-throughput, so iteration speed has become

the limiting factor.
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Future Developments

Biology is shifting from running single experiments to
coordinated campaigns of experiments, Bayesian
optimization, and active learning.

This shift is happening now because models are
useful, lab robots are accessible, and assays are
high-throughput, so iteration speed has become the
limiting factor.

The core workflow is a repeatable loop: design
the next set of conditions, execute them, measure
outcomes, learn from the data, and choose the
next run—on a daily or weekly cadence rather

than quarterly.
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Future Developments

e Biology is shifting from running single experiments to

coordinated campaigns of experiments, Bayesian

optimization, and active learning. ’ | Clinical Testing ﬁ,ﬁg&%‘g‘:‘i;:'

e This shift is happening now because models are

. Target Lead Lead Preclinical FDA/EMA _
useful, lab robots are accessible, and assays are Identification  Discovery  Optimization  Testing :

high-throughput, so iteration speed has become the g . A R X . w ” }) 9P
limiting factor. OB | X0 P A%*NO% ’(
. . 7-10 years 6-12 years 1-2 years
e The core workflow is a repeatable loop: design $600M-$800M > $1.2B-$1.48 ~$50M
! ———————
e ~200 enter L ~5 enter 1 approved
the next set of conditions, execute them, measure e ilont taetig kel ekt 5 POATEMA

outcomes, learn from the data, and choose the

next run—on a daily or weekly cadence rather

than quarterly.
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What is the most common tool for synthetic biologists?
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How can we improve this?
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Sneak Peak

How to Grow (Almost) Anything 2025

Lab Protocol: Bioproduction of Beta-Carotene and Lycopene
How to Grow (Almost) Anything 2025 Edited December 29, 2024

Lab Protocol: The Chromophore Color Cloning Quest
Protocol | Part 1: Overnight Cultures
Protocol | Part 1: PCR
Time Estimate: 30 Minutes, 24 Hour Incubation ] a

Media, Equipment and Consumables Time Estimate: 30 Minutes, 24 Hour Incubation

LB with pre-added antibiotic (chloramphenicol) Media, Equipment and Consumables
Pipette set, serological pipettes and pipette tips
Incubation room

Culture tubes

Ice bucket

Phusion High-Fidelity PCR Master Mix
Primers (working stocks, at 10 uM)
UltraPure Water

PCR tubes

Thermocycler

P20 pipette and 10uL tips

P200 pipette and 200uL tips

You'll be testing two genes, two media combinations, one input, and two temperature conditions
shown above. You'll need to set up 16 unique overnight cultures in given culture tubes, alongside
duplicates for each, and two cultures with just media (so a total of 34 cultures in total)

Condition # Plasmid Culture temp Growth Medium
1and 2 pAC-LYC 30°C, 37°C Luria Broth (LB)
3and 4 pAC-LYC 30°C, 37°C LB + fructose

Setup the following PCR reactions:

Sand 6 PAC-LYC 30°C, 37°C 2YT Universal DNA Fragment (Univ Fwd and Univ Primers)
7and 8 pAC-LYC 30°C, 37°C 2YT + fructose
9and 10 pAC-BETA 30°C, 37°C LB

11 and 12 pAC-BETA 30°C, 37°C LB + fructose
13 and 14 pAC-BETA 30°C, 37°C 2YT

15and 16 pAC-BETA 30°C, 37°C 2YT + fructose

Reagent Stock Conc. Desired Conc.

Mini Prepped mUAV Check Stock Typically 10 ng
Univ Forward Primer 10 uM 0.5uM
Univ Reverse Primer 10uM 0.5uM
Phusion HF PCR Mix 1x
1. For each conditions above, set up overnight cultures that contain the following Nuclease-free water na

a. 5 mL of the specified media (already supplemented with antibiotic)

b. 10 uL of E. coli from the starter culture with the specified plasmid
2. Grow cultures for 24 hours in the circular roller drum in the appropriate warm room

Total Volume
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13 and 14 pAC-BETA 30°C, 37°C YT

15and 16 pAC-BETA 30°C, 37°C 2YT + fructose

Reagent Stock Conc. Desired Conc. Volume

Mini Prepped mUAV Check Stock Typically 10 ng XuL
Univ Forward Primer 10 uM 0.5uM 1.25uL
Univ Reverse Primer 10 uM 0.5uM 1.25uL
Phusion HF PCR Mix 1x 12.5uL
1. For each conditions above, set up overnight cultures that contain the following Nuciaase-feswaler nia 10 - Xul
a. 5 mL of the specified media (already supplemented with antibiotic)
b. 10 uL of E. coli from the starter culture with the specified plasmid
2. Grow cultures for 24 hours in the circular roller drum in the appropriate warm room

Total Volume 25 uL
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Lab Work is Constrained by Physical Capacity

68-089 (HTGAA Lab Space)/ ~15.5 ft lab bench ~5 ft space

Total Bench Width: ~101.5 ft

NOTE: HTGAA Currently uses the first 5 lab

/=5 fab bench . 55 space benches in this room, denoted by n

Bench Depth: ~2.5 ft
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Lab Modules




Lab Modules
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On-deck
plate reader

Opentrons heater shaker
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Lab Devices

>$300k
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Al Scientist and Discovery

nature chemical engineering

Article

https://doi.org/10.1038/544286-023-00002-4

Self-driving laboratories to autonomously

navigate the proteinfitness landscape

Received: 20 July 2023 Jacob T.Rapp®', Bennett J. Bremer' & Philip A. Romero ®'?
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Automation-enabled real-time monitoring and feedback
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Automation-enabled real-time monitoring and feedback
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Automation-enabled real-time monitoring and feedback
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Part 3: Demonstrations
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Demo 1: RF Diffusion, AlphaFold
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https://colab.research.google.com/github/sokrypton/ColabDesign/blob/v1.1.1/rf/examples/diffusion.ipynb#scrollTo=wqEi03_qi_g2

Demo 2: Lab Automation
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https://colab.research.google.com/drive/1uZYHZxiJs28KnnWk7lXRKYohpiyiOGKm

Part 4: Case Study
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