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How can we improve experimental discovery to advance society and 
improve wellbeing?
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● 2021: Structure prediction becomes usable (AlphaFold2)
○ Accurate protein structures at scale shift biology to model-informed 

decisions.
● 2022: Protein language models scale the “sequence → insight” loop 

(ESMFold / ESM-2)
○ Faster, cheaper inference and massive sequence-space coverage 

enable large metagenomic structure atlases and numerous 
hypotheses.

● 2023: Generative design arrives (RFdiffusion)
○ Models begin proposing new sequences/molecules, not just predicting 

nature.
● 2024: Interaction-centric modeling (AlphaFold 3)

○ Focus shifts from "folded shape" to binding interactions (complexes, 
ligands, RNA/DNA).

● 2025: Truly novel functional proteins and target-conditioned design 
emerge (ESM3 → esmGFP)

○ Foundation/diffusion models generate novel, functional proteins, 
making target-conditioned design practical and moving protein 
engineering toward an iterative workflow.
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○ One editor applied to one disease program over many 

years, treating many patients.

● New Frontier (N-of-1) 

○ Patient-specific editing for ultra-rare mutations (e.g., 

bespoke therapy for a child by CHOP/Penn).

● Shift in Value 

○ The "product" is now the capacity to rapidly generate 

safe, specific edits. Value is placed on speed and 

correctness, not just novelty.

Gene editing is becoming a more repeatable process, reframing 

medicine as an engineering discipline where biology is 

increasingly programmable.
https://www.chop.edu/news/worlds-first-patient-treated-per
sonalized-crispr-gene-editing-therapy-childrens-hospital
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3. Personalized CRISPR Therapy - Challenges

https://www.synthego.com/blog/delivery-crispr-cas9/
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4. Market Growth
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How can we improve this?

=



Sneak Peak
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 ~15.5 ft lab bench

~8 ft lab bench

68-089 (HTGAA Lab Space) ~5 ft space

Total Bench Width: ~101.5 ft
~5.5 ft space

Bench Depth: ~2.5 ft

NOTE: HTGAA Currently uses the first 5 lab 
benches in this room, denoted by 

H H H H H

H
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Lab Work is Constrained by Physical Capacity

But what if we could fill these with robots or automated throughput testing? 
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Lab Modules

Opentrons Thermocycler module

On-deck
plate reader

Opentrons heater shaker



Hamilton STAR

Open source robot

Tecan Freedom EVO

Hamilton Vantage

Opentrons OT-2*

>$300k <$10k

>$300k

>$300k

Many more…

Lab Devices
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AI Scientist and Discovery
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Automation-enabled real-time monitoring and feedback

Example: Continuous 
phage development

Can be used to 
automate conditions 
and DNA constructs 

for expression
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Automation-enabled real-time monitoring and feedback

Esther, Suvin, Ronan conducting fluorescent artwork preparation with a laboratory 
scheduler
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Demo 1: RF Diffusion, AlphaFold
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https://colab.research.google.com/github/sokrypton/ColabDesign/blob/v1.1.1/rf/examples/diffusion.ipynb#scrollTo=wqEi03_qi_g2
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https://colab.research.google.com/drive/1uZYHZxiJs28KnnWk7lXRKYohpiyiOGKm
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